If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t-5+4t^2=0
a = 4; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·4·(-5)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{21}}{2*4}=\frac{-2-2\sqrt{21}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{21}}{2*4}=\frac{-2+2\sqrt{21}}{8} $
| Y=6*x-5.5 | | -439=5x-7(-7x+1) | | (7p+14)(8+-2p)=0 | | 37/7=111/n | | 8+3(k+2)=4k-2(k-7) | | 90x+20=200 | | 8(2x-3)-5x=3x+8 | | -2(v-1)=3(v+1)+4 | | 5/3x=7(3-2x) | | 11x+22=134 | | m°8=248 | | 5-7(7n+3)=-212 | | X^2-18x=-2x+64 | | 218=7(4+7x)-6 | | 0.35x+1.4=0.25-1.5 | | m·8=248 | | 6x+7=-3x+16 | | s-15=127 | | n+12=56 | | -148=7(1+3p)-8 | | v2+1=–1 | | 7x+17=2x | | -3(1+5m)=-123 | | -3(1+5m=-123 | | x-01x=45 | | x(x-12)=-24 | | 4k+5(6k+2)=146 | | -5+4x=3x-9 | | 8+10x=88=x-5=-9 | | 2x/6=(5^x)10 | | x-5+2x-55+3x=360 | | 5x(6+x)=8x-9 |